The Bits In-Between

An EE's Guide to Survival Between Microphone and Voice Coil

Bruno Putzeys

Hypex Electronics, Grimm Audio, The Netherlands

On the occasion of the 123rd AES Convention, October 6, 2007

Copyright Notice

- This presentation ©2007 Bruno Putzeys, Hypex Electronics, Grimm Audio.
- Do not distribute this file, instead link to this file on the Hypex or Grimm Audio web site.

A bit of Perspective

It's all in the head Transducer theory without psychoacoustics=rubbish

A bit of Perspective

The parts most covered in mystique are in fact the utilitarian ones:

- Amplification
- Conversion
- Transmission

Only effects gear should modify the signal audibly

Contents

- Revealed Preference. Running after your ears.
- Unhappy about Negative Feedback?
- Hands-On Op Amp Theory. How they work. Or sometimes don't.
- Minimalist design, or not? Handle Lightly Those Electrons.
- That Digital Sound: Sampling theory is the solution, not the problem.
- Asynchronous SRC: The fine print: it's only 99% digital.
- Digital loudspeaker EQ and cross-over: Just another tool in the box.
- EMI behavior of class D amplifiers. Listen To The Radio.
- Requirements for SMPS in power amps. Mo' power.
- Intelligent Design in Audio: Subcontracting Audio Design

Revealed Preference: Euphonic or Transparent?

How Do You Listen?

- 1. "Preference Test": compare to reference product
 - Design cycle converges on "best sounding".
- 2. "Bypass Test": compare output to input
 - Design cycle converges on "maximally transparent".

Note different meanings of "transparent"

- Audiophile: Barrage of fine detail
- Pro: no audible difference between in and out.

Revealed Preference: Euphonic or Transparent?

Reference Listening Fallacies: Yeah but...

- "I'm listening for the most neutral sound, not for the sound I like best"
 - Result will be what you think is most neutral...
 - ...Not what you *really* like best

...Not what is *truly* transparent

Worst of both worlds!!!

- "I go to live concerts regularly to recalibrate my ears"
 - No actual reproduction takes place (audio=illusion).
 - Your design will be specialised to make your favourite recordings sound realistic

Example non-linearity: pure second order function

• Feedback results in "intermediate" shaped transfer (function has a square root in it)

- 2nd harmonic drops.
- New harmonics appear, including odd ones!

Negative Feedback Guidelines (1)

- Practical open-loop errors are too large for guaranteed transparency.
- Feedback is the most effective tool for reducing errors
- <u>Moderate loop gain does more harm than good</u> in realistic circuits.
- Improved open-loop linearity reduces NFB-related products by a greater extent.

Don't Be a Wimp. Use NFB and use tons of it.

This is a voltage amplifier...

...This is not!

Transconductance Amplifiers

- Common Emitter Circuit
 - $g_m = I_E/26mV$
 - Moderate Z_{in}
 - High Z_{out}

Common Source Circuit

- g_m=device and current dependent
- Very high Z_{in}
- High Z_{out}

Current Amplifiers

- Common Emitter Circuit
 - A_I=h_{fe}
 - moderate Z_{in}
 - high Z_{out}
- Common Base Circuit (=cascode)
 - A_l≈1
 - low Z_{in}
 - Very high Z_{out} (Ccb dominates)

- Current Mirror
 - A_l≈1
 - low Z_{in}
 - High Z_{out}

out

Transimpedance Amplifiers (I/V converters)

- No fundamental circuit, except perhaps:
 - Z_{in}=Z_{out}="Low" only if source and load are high-Z

Feedback type I/V

- Z_{in}≈1/gm
- Z_{out}≈1/gm

Voltage Amplifiers

- Only one truly fundamental voltage amplifier:
 - Very High Zin
 - Low Zout

• Follower = transcond. amp with voltage feedback.

An op amp is an integrator

$$|A_{v}(f)| = \frac{g_{m}}{C} \cdot \frac{1}{2 \cdot \pi \cdot f} = \frac{g_{m}}{2 \cdot \pi \cdot C} \cdot \frac{1}{f}$$

$$GBW = \frac{g_m}{2 \cdot \pi \cdot C}$$

An op amp is an integrator

Negative Feedback Guidelines (2)

Impact of integrating character on sound

- Loop gain drops 20dB/decade
 ⇒Closed-loop THD increases with frequency
 ⇒Spectral distribution shifts towards higher frequencies
- Euphony In Action! Rising THD vs frequency profile has a recognisable sonic signature.
 - HF is only mildly affected except in very bad cases.
 - Bottom end becomes extremely "tight", "powerful" and "controlled".
 - Often attributed to "huge current reserve" of behemoth power stage. Really caused by HF THD of sluggish amp.
 - Propagates "Damping Factor" myth.

Negative Feedback Guidelines (2)

Not scientifically established but useful nonetheless:

- When you're strapped for loop gain at 20kHz, limit lowfrequency loop gain to the same value.
- THD becomes higher but constant throughout the audio band.
- Colouration becomes less obvious and less annoying.

Hang on... What's the output voltage referring to?

So really... $V_{out} = 2 \cdot \pi \cdot GBW \cdot \int V_{in} dt + V_{CC}$ V_{cc} V_{cc} V_{ripple} (VRIPPLE + + V_{cc}

The PSRR Gotcha:

- One rail is output reference
- PSRR is essentially ZERO
- Measured PSRR = $A_L \approx A_{V,OL} A_{V,CL}$
- PSRR in typical audio app is not astronomical

"Folded Cascode" Amp

- Pro:
 - Output Reference is Ground
- Con
 - Buffer impedance is critical
 - Bias sources add noise
 - Non-linear circuit capacitance adds to integration cap

Cascoding the current junction

Cascoding the current junction

- Pro:
 - Reference is made explicit
 - Other advantages of feedback transimp stage remain
- Con:
 - Bias sources add noise to Transcond stage output current

Hands-On Op Amp Theory: CM distortion

Manifestation

• 20dB/dec THD increase

Causes

- Non-linear input capacitance
 - Dominant problem
- Transistor mismatch
 - Also limits DC PSRR
- Load mismatch
 - All but negligible effect

Circuit sensitivity

- All 3 effects happen in noninverting mode
- None happen in inverting mode

Always Invert?

- Guaranteed fix
- Useless in low-noise circuits.

Impedance Matching

- Eliminates dominant cause
- Source impedance not always known
- Noise penalty

Input Stage Improvements

Boot strapped cascode

Input Stage Improvements

Boot strapped folded cascode

Hands-On Op Amp Theory: Going discrete?

Reasons for going Discrete

- Need more headroom
- Trade typical IC compromises for better performance
 - Input Common Mode range
 - Low-supply operation
 - Lack of 6th connection

Not reasons for going Discrete

- "Discrete is better"
 - Come off it, IC technology is mature
 - Discrete copy of IC op amp has the same drawbacks

Basic premise of minimalism

- "Any component a signal passes through, degrades it"
 - Underlying assumption: the whole is always the sum of the parts
- Associated philosophy: "zero feedback"

...do I sense a self-fulfilling prophesy coming?

Source of the confusion: inaccurate wording.

• Let's correct this:

"Any process a signal goes through, degrades it"

- A bunch of parts enclosed in a feedback loop = ONE process.
 - Result is not "sum of parts".
 - Neither mathematically, nor sonically.

• Can a process be improved by adding parts? Yes it can!

Example 1: Cascode

- Cascoding is also accepted by minimalists
 - Undercuts the "sum of parts" premise

Example 2: 4th order low-pass filter.

• First try: Minimalist, only one op amp

Problem: Noise gain is high

- Noise outstrips DAC's
- Op amp is starved of loop gain
- Frequency response deviates noticeably from ideal
- THD comes out of noise floor
 - Worse than 2 separate 2nd order sections
 - Sounds worse too...

Second try: Two-op amp filter w/ global feedback

Second try: Two-op amp single stage filter

- Complexity doubles
- Either stage adds loop gain to the other.
- THD is lower than a single stage (and unmeasurable)
- Converter chain is now audibly transparent

Sampling Theory's Basic Promise

A sampler flanked by low-pass filters with sufficient attenuation at fs/2 does exactly the same as the low-pass filters alone.

The TOA Cue Fallacy

- "The ear can detect a 2us Time-Of-Arrival difference"
 - Correct! (0.2° lateral shift in stereo image)
- "So we need 500kHz sampling"
 - Uhhh not quite...

The Nonoversampling Fallacy

• "Digital Square Wave" test signal looks like this:

The Nonoversampling Fallacy

• After "NOS conversion" (=zero order hold) we get:

The Nonoversampling Fallacy

• Now insert a half-sample delay:

The Nonoversampling Fallacy

- Impulse Response becomes time-variant
- Fallacy was facilitated by the "Digital Squarewave" signals from test kit and test discs.

• The "Digital Step Function" reconstructs like this:

• Contrast with an actual band-limited step function

Dear test equipment designers: please provide a "true square wave" of arbitrary frequency

NOS Rundown

- NOS DAC may sound OK
 - We really don't notice much beyond 20k...
- NOS DAC sometimes sounds better than same DAC with digital filter
 - DAC in these experiments is invariably ladder type
 - Glitch contribution goes up with sampling rate
 - Latch signal passes through filter chip (increased clock jitter)
- None relate to impulse response

 Antialias filtering in contemporary ADC's is mostly done digitally, in a "decimation chain"

Gabarith for 8fs -> 4fs filter stage

Gabarith for 4fs -> 2fs filter stage

- A perfect candidate: The Half-Band filter
 - Magnitude response is chosen symmetrical round 0.25fs and 0.5.
 - Stop band = 0.5fs pass band
 - Stop band rejection = stop band ripple

Half-Band filter, Magnitude Response

Half-Band filter, coefficients

Digital Filters: Design Compromises

Gabarith for 2fs -> 1fs filter stage.

Digital Filters: Design Compromises

Typical final stage in commercial converters

Cut & dried breach of Nyquist criterion!

Digital Filters: Design Compromises

0.4535*44.100kHz=20.000kHz
Result

- Band between 0.4535fs and 0.5565fs suffers aliasing.
- Only 12dB of attenuation at $f_s/2$. Signals with significant energy near $f_s/2$ are worst affected.

 Next slide: demonstration: f_s=44.1k. Square wave of f≈3150Hz is fed into ADC. 7th harmonic aliases.

To human ears:

- TOA cues are affected for signals with significant HF.
 - Sibilants in choral music, wind and string instruments smear across the whole stereo image.
- Nearly no impact for panpot stereo.
 - Alias components are in phase across channels

How to Salvage a Burnt Steak

• Cut off the blackened bits.

Applicability of Steak-Salvaging filter.

- Use once in the entire record-replay chain
 - The rest of the chain may keep using halfbands.
- Check by ear
 - The 44.1kHz version has a sonic signature.
 - Weigh against improved imaging.

The Equiripple Filter

- "Just Enough" attenuation = minimum number of coefficients.
- Windowed Sinc filters roll off further inside the stop band. Unnecessary attenuation increases length.
- Example: Equiripple, 75 taps. Windowed, 95 taps.

In a halfband filter, ripple and attenuation are linked

Ripples are equal in amplitude and nearly equally spaced. Spacing $\approx 2/(\text{#taps+1})$

Let's define another linear-phase filter with nearly the same in-band response

Impulse response of that filter (exaggerated):

- Constant in-band ripple equates to echos at the ends of the filter.
- Amplitude of echos = stop band attenuation 6dB
- Post-echo is certainly masked. Pre-echo possibly not.

Close-up of ripple of windowed sinc filter

Compare 2 halfband filters at 95 taps

Import on "digiphobia"

- Classic argument against digital: "pre-ringing"
 - Little serious evidence of audibility of pre-ringing outside the audio band exists.
 - Looks like a red herring
- 2 common impementation problems were identified
 - Aliasing and Pre-Echo
 - Audible deficiencies are linked to compromising.
 - Solved by better adhering to theory, not deviating further.
- Pre-ringing hypothesis is not needed!
 - You Hear What You Hear but it's Not What You Think.

Testing audibility of brick wall filtering

- Use a 96kHz or 192kHz recording.
- Slice off 0.4535-0.5fs area.
- Test the following filters (never decimate):
 - 20kHz sharp-rolloff
 - 20kHz slow-rolloff
 - 40kHz sharp-rolloff

Effect of Slow-Roll Filter after the fact...

...reverses effect of sharp rolloff filters

(example: standard 96kHz AD/DA with slow LPF inserted)

Should we put Slow-Rolloff filters in IC's?

- NO! Compounded SR filters amount to a brick wall.
- Only brick-wall filters are "idempotent".
- Use brick-wall filters throughout and shape response only once.

How About The Slow-Rolloff Filters in Chip XYZ?

• Intended to reduce latency, NOT improve sound quality

The Phase-Optimised Filter

• Reduces pre-ringing at the expense of post-ringing

- Magnitude response is maintained
- Cost-effective implementation (IIR+short FIR at f_{sout})
- Reduces latency with minimal loss of sound quality

Are phase-optimised filters a good thing?

• YES. Much better tradeoff between audio performance and latency.

Should phase-optimised filters be standard?

- NO. One pass may be inaudible but 2 passes? 10?
- "Improved sound quality" claim is based on pre-ringing hypothesis.

What SRC does

- Reconstruct waveform, resample at new rate
- Done by interpolation

Basic Concept of Asynchronous Sample Rate Conversion

- When f_{sin}/f_{sout} ratio indication is correct, interpolator will read FIFO exactly as often as it is written.
- f_{sin}/f_{sout} ratio is updated to keep FIFO half full.
- Hardware implementations have separate Ratio Estimators

Basic problem of ASRC: measurement accuracy

Accuracy = sampling rate of Ratio Estimator

Basic problem of ASRC: measurement accuracy

Accuracy = sampling rate of Ratio Estimator

Example IC ASRC

- Output rate = 47.999kHz
- Input rate = 48kHz (blue), 48.025kHz (red)
- Separate independent clock osc drives SRC process

Example IC ASRC

- Output rate = 47.999kHz. Input rate = 48kHz (blue)
- Separate independent clock osc drives SRC process.
 Oscillator can temperature = 25°C 40°C 55°C

The Headline

• ASRC's greatly attenuate input jitter...

The Fine Print

- ...but add a lot of their own before doing so!
- And encode the remainder in the data!
 - Signal degradation is irreversible
- ASRC is not a fully digital process!
 - Frequency is a physical quantity = analogue
 - Ratio between independent oscillators = analogue

Good Uses for ASRC

- Synchronisation in a mixed-rate environment
- Jitter reduction in DAC. *Run the DAC at an odd rate!*

Not Good uses for ASRC

- Blanket synchronisation issue solver
- Mastering (use synchronous or software based SRC e.g. Barbabatch)

Utterly Repugnant uses for ASRC

- Jitter removal device in one-box players
- "Upsampler" in consumer devices

The Siren Song

- Perfect amplitude/phase/impulse response
- From any speaker
 - Measure speaker response, invert, apply FIR, presto!
- Ultra-steep, linear-phase cross-over

The standard approach

- Impulse inversion method.
- Corrects all linear distortions, including echo's.

OK, let's try this!

- Test Mule:
 - 2x5" woofer (Vifa OEM)
 - 1" tweeter (Morel)
 - Classic MTM arrangement

On-Axis Response

30° Horizontal Off-Axis Response

Note: some peaks/dips shift frequency!

30° Vertical Off-Axis Response

- Tremendous comb filter in LF response
- Other peaks/dips shift frequency!

Before we've even started...

- Worst irregularities are diffractions
 - Cabinet edges and woofer cones
- Virtual sources are far from drivers
 - Reflections change with listening position
 - Subverts response correction off axis

Mis-correction of reflections and diffractions

Corrected and Filtered HF response (on axis)

"Corrected" and Filtered HF response (30°H off axis)

"Corrected" and Filtered HF response (30°V off axis)

Sum Response (on axis)

Sum Response (30°H off axis)

Sum Response (30°V off axis)

Impulse Response (on axis)

	I		I	I		1 1	I	1 1	
	_								
ſ	-								
	_				1				
	-								
	_								
	-								
L	_								
	_								_
	_				- N				_
	_				11				_
					11				
					11				
	-				н				_
					11				
					ستنشاله				_
L									

Impulse Response (30°H off axis)

Impulse Response (30°H off axis, Y zoom)

Impulse Response (30°V off axis)

Impulse Response (30°V off axis, ultra-steep filter)

Observations

- Heavy correction exacerbates acoustic problems
- Steep, linear-phase filtering causes pre-ringing in offaxis response
- Linear-phase target response invites pre-echos

⇒Brute-force correction produces ugly, smeared sound

Sensible approach to correction:

- Don't Shave Off The Hair. It'll Grow Back.
- Limit scope of correction to a few periods

⇒ The subtler the correction, the wider the listening angle in which it still makes some sense.

Even better approach to correction: manually!

- Forget FIR
- Of each bump and trough, find cause
 - If the driver is the source: correct ruthlessly
 - If the source is elsewhere: EQ gently
- Know your acoustics...

Cross-over Filtering

- Use shallow slopes
- Target minimum phase sum
 - We <u>really</u> don't want linear phase HPF!
 - We only care about the sum, not the individual drivers.

• (...)

Conclusion

- DSP does not exonerate you from doing your acoustical homework
 - You might even need to work harder
 - Some acoustic concepts really are "broken"
- Automated design procedure = pipe dream
- Impulse inversion method is naïve

Low-frequency EMI: Carrier and low harmonics.

- Close match with theory.
- Ripple cancelling possible.
- Not an EMI issue except for long cables
- Not a tweeter issue (come off it!)

Common and Differential Mode in H-Bridge Class D

• "Class AD". Carriers and modulation are out of phase

"Class BD".

• Carriers are in phase. Modulation is out of phase.

Half bridge vs Full Bridge, Class AD vs BD

- Half-bridge
 - Can't cancel either CM or DM
 - Common-mode is half of differential mode
- AD
 - Common-mode voltage theoretically 0
 - Differential mode same as half bridge
- BD
 - Differential mode cancels at low modulation... ...but that was not really a problem anyway.
 - Common-mode voltage same as half bridge

High-Frequency EMI: Leaking switching transients

- Theoretical modeling is useless.
 - Capacitors become inductive
 - Inductors become capacitive
 - PCB becomes jumble of L's and C's.
- No tricks. Only good hardware design helps.
- Direct EMI problem under all circumstances.

Sensitive item 1: The capacitor.

- Myth of the "Low Inductance Capacitor". (An Audiophile Favourite)
 - All modern film caps have sprayed end contacts.
 - Inductance is determined by geometry only (mostly size).

Period.

Sensitive item 2: The inductor.

• Stray fields out of toroids

• Upright mounted toroids are worst.

Sensitive item 2: The inductor.

- Beware of indirect Capacitive Coupling through Core
 - Tight windings are better magnetically but worse electrostatically.
 - No external electrostatic shield: Capacitive coupling to chassis etc. can get significant.
- Toroids are not always optimal

Sensitive item 2: The inductor.

• Ferrite inductors: avoid direct capacitive coupling between windings

- "Hot" end sees "Cold" end
- 2 layers is worst case situation
- 1 layer is best

Sensitive item 3: The PCB layout.

- Contiguous ground plane
 Keep connectors together
- Avoid capacitive coupling to external parts
- Minimize loop area (≠short traces)

Checking for EMI without Spectrum Analyser

- Just probe around the external connections with a scope!!!
- If you see rubbish, there is rubbish
- The higher the frequency, the more you should worry

Example: Amplifier A, rated 160W

Amplifier A, one output line

• 1V/div. Probe clip at RCA ground.

Amplifier A, common mode

500mV/div. Amp is claimed to pass FCC???

Amplifier A, differential mode

• 500mV/div. Note: relatively clean.

Example: Amplifier B, rated 2kW

Amplifier B, common mode

• 250mV/div. Probe clip at power GND faston tab

Amplifier B, differential mode

• 500mV/div.

Class D EMI is no mystery

- Eyeballing components and PCB gives good indication
- Invest in an analogue scope
- Don't bother EMC testing if the scope pic isn't squeaky clean

Specifying SMPS for Audio

The complaint

- "I need a 2kW amp to do what a 1kW amp would do in the old days"
- "It sounds great with some sources and sux with others"

Specifying SMPS for Audio

Power Handling of COTS SMPS

- Protection limit = Peak Rating = DC rating
- Thermal design for rated output
- Protection = constant current, foldback or stop
Power demand of resistive load

- Peak current/voltage = 1.414x RMS
- Peak power = 2x average ("RMS") power

Power demand of reactive load

• Example impedance plot

Power demand of reactive load

• Worst case current pulse

Power demand of reactive load

Maximum current pulse = 2x peak current in DC resistance!

Reactive or resistive:

• SMPS rating = amplifier rating is inadequate

Practical set of requirements

- Thermal design
 - 1/8Pr indefinitely (suggest 1/3Pr for pro)
 - Pr continuous for 5 minutes (IHF rating)
- Protection
 - Constant-Power at 2x Pr

EMI: Injected mains current

- Getting clean rails is easy (differential mode)
- Getting low CM noise is harder

- Y cap reduces CM noise voltage
 - CM current reduction is indirect
 - Increases coupling of mains-borne noise

Leakage current exacerbates Pin-1 problem

- Current enters circuit ground.
- Circuit ground current includes return
 - You can't just disconnect it (AES48 style).
 - Requires chassis connection at PSU output.
 - Creates additional layout challenges

Additional EMI requirements for audio SMPS

- Common mode voltage/current noise
- Primary-to-secondary impedance

Nightmare story #1

- Customer wanted 100W class D solution
- Subcontracter had a fully working design that fit well
- C insisted on using "metal core" boards (hybrid)
- S made list of 8 technical issues that would definitely kill the project.
- C said all problems would get resolved
- All problems materialised, few got solved
- Project failed. C's project manager resigned

What went wrong?

Nightmare story #1

- Customer wanted 100W class D solution
- Subcontracter had a fully working design that fit well
- C insisted on using "metal core" boards (hybrid)
- S made list of 8 technical issues that would definitely kill the project.
- C said all problems would get resolved
- All problems materialised, few got solved
- Project failed. C's project manager resigned

Customer specified how, not what

Nightmare story #1

- Customer wanted 100W class D solution
- Subcontracter had a fully working design that fit well
- C insisted on using "metal core" boards (hybrid)
- S made list of 8 technical issues that would definitely kill the project.
- C said all problems would get resolved
- All problems materialised, few got solved
- Project failed. C's project manager resigned

Customer specified how, not what Customer could not justifiably make this judgment!

Nightmare Story #2

- C wants high-end class D amplifier...
 - that does not use feedback
 - that processes DSD...
 - ...with no alteration
- S produces a highly complex but working prototype
- C thanks S and starts product development cycle.
 - Layout gets changed

. . .

Clock distribution gets changed

Project fails as C can't debug a buck regulator circuit...
What went wrong?

Nightmare Story #2

- C wants high-end class D amplifier...
 - that does not use feedback
 - that processes DSD...
 - ...with no alteration
- S produces a highly complex but working prototype
- C thanks S and starts product development cycle.
 - Layout gets changed

. . .

Clock distribution gets changed

Project fails as C can't debug a buck regulator circuit...
C specifies how, not what

Nightmare Story #2

- C wants high-end class D amplifier...
 - that does not use feedback
 - that processes DSD...
 - ...with no alteration
- S produces a highly complex but working prototype
- C thanks S and starts product development cycle
 - Layout gets changed

. . .

- Clock distribution gets changed
- Project fails as C can't debug a buck regulator circuit...
- C specifies how, not what
- C overestimates self / underestimates problem

Outset

- Customer has needs
- Subcontractor has capabilities

Potential problem

 <u>Perceived</u> overlap of competences (Real overlap of actual competences is not a problem)

Failure modes

- Customer overestimates what they can do themselves
- Customer specifies implementation details
- Subcontractor meddles in customer's work.

Success Story

- C wants DSP/amplifier electronics for loudspeaker
- C and S agree "black box" spec
- S designs electronics
- C designs acoustics and filters
 - Politely refuses S' spontaneous input ("that's our problem")
- Both parties finish in time, product is well received.

Critical steps for the Subcontractor:

- Agree and insist on responsibilities
- Avoid inept customers
- Refuse paper-only gigs
- Charge for spec changes once the design is underway

Critical steps for the Customer:

- Hire expertise, accept expertise.
- Write "black box" performance spec
 - Performance is judged with the box closed and the power on.
 - "Subjective sound quality" is a black box spec too.
 - Type of circuit or parts is <u>not</u> a performance spec.

The Two Roads

The Road To Hell: Specify the Design, Accept the Performance.

The Road To Heaven: Specify the Performance, Accept the Design.

Thank you!

Grimm AUDIO

recforums.prosoundweb.com